Skip to main content

Med School in Miami

1977-1979

On Old Olympus’ Towering Top…

Just how did the University of Miami magically compress the usual four years of medical school into just two? Well, if you taught beginner swimming by throwing everyone into the deepest end of the pool, then awarding diplomas to any survivors, you’d have the basic idea.

While the “basic sciences” would normally be covered in two years of lectures and labs, we had them crammed into 9 months. For the PhD-to-MD students with doctorates in the biologic sciences, it was intense but doable. But for those from pure engineering backgrounds  — bereft of pre-med courses such as organic chemistry — the only way to survive was with intensive memorization. Mnemonics — unforgettable sayings whose first letters correspond to the names you’re trying to memorize — were key. And I created over 1500 flash cards, flipping through them late into every night.

Pocketing my first medical informatics invention

Emerging from the 9 month onslaught of lectures, it was time for clinical rotations, in which the junior medical student’s role is to gather all the data  surrounding every patient, and be able to instantly and flawlessly report it to the more senior residents and attending physicians – any time, any place.

Scribbled index cards were in common use, but I wanted something more compact and organized. So I designed and built the custom plexiglas pocket clipboard, shown here. I had index cards printed with a grid and punched in the 4 corners, to keep penciled-in data organized in rows and columns. Each patient had a problem list, med list, history and physical, and lab flowsheet all on a single card.

With the clipboard back transparent, I kept critical info (drug doses, telephone extensions, etc) on the back of the bottom card for instant access. Those two plastic arches had a thin gap at the top, letting me insert or remove any card in the stack with the flick of one hand. There was one side effect: notoriety. Whenever the attending doc asked for more detailed patient data, the ward team just turned to me, “the clipboard guy”.

A Medical Residency in Portland

1979-1982

How I learned to hate paper medical charts…

I chose Oregon Health & Science University for my residency. Susie’s health was declining so we chose Portland to be near her family.

A few weeks into internship at the Portland VA, I was summoned at 2 AM to “pronounce” a patient. Being my first time, I was very careful to check for vital signs and confirm the chart matched the patient bracelet before signing the certificate. Paged again at 3 AM, I was told it was also my responsibility to call the family. Trudging back to the ward, I took the chart handed to me and called the number on the next-of-kin form. The daughter was shocked, but I did my best to console her. After another fitful hour of sleep, I was paged again to find the daughter had arrived and now confronted me with her declaration that “my father’s not dead!” My own heart stopped — had I missed a faint heartbeat? She led me to a different patient room, where a father wondered why his daughter seemed so surprised to see him.

At my 3 AM call, I’d been handed the wrong chart, with the same, common last name. The daughter was so happy to find her Dad alive, she didn’t lodge a complaint, but I was deeply mortified. I already disliked the messiness of paper medical charts, but this took my aversion to a new level. It probably set the stage for my 30-year career endeavor to bring medical charts into the computer age.

 

A novel form of doctor/patient communication

In my senior residency year, we had a patient in the VA ICU with Guillain-Barre Syndrome, a rapidly progressive paralysis that ascends from the legs upward through the body. With meticulous care there can be a full recovery over many weeks, but the “locked-in” phase of complete paralysis can be psychological torture. We could only guess at what he wanted or needed and his suffering was undeniable.

When his family visited, I asked them about his experience as a WW II veteran. When they reported he was a submarine radio operator, a light bulb blinked on in my brain. I asked him if he knew Morse code, and he blinked once for yes, but trying to blink his eyes in Morse code quickly exhausted him. So I examined him to see what other muscle strength he had left, and found he could still clench his jaw slightly. I donned a glove, put one finger between his teeth, and asked him to try sending Morse code that way. Immediately he squeezed out HOW DO YOU DO. THANK YOU !

I built a crude Morse code key using tongue depressor sticks, a switch, and buzzer. With this he could send clean Morse code, and became quite chatty with me! A Morse code chart over the bed helped the nurses understand him, though he had to send very slowly. Finally able to express his needs, he made it through the locked-in phase to a full recovery.

I’m (Not) Falling For This

1983

The Ambularm – an ambulation alarm

At St. Vincent Hospital, word spread quickly about the quirky new hybrid doctor/engineer down in the basement, and one of the senior physicians soon wondered if I could help him solve a big problem: patient falls. Despite instructions not to do so, patients would get out of bed and fall down on the way to the bathroom. Even the best hospitals experienced hundreds of these events per year, causing everything from bruises to hip fractures to head injuries and deaths. Bedside rails didn’t reliably prevent this, and restraining the patient in bed wasn’t acceptable either.

Weight sensors in the bed had been tried, but they didn’t activate until the patient had left the bed, and they didn’t protect a patient who was sitting in a wheelchair either. So we hit on the idea of a battery-powered tilt sensor that would be worn in the thigh, and would sound an alarm as soon as the femur (thigh bone) angled downward more than 30 degrees.

I built a crude prototype with Radio Shack parts in a plastic box with an elastic strap to hold it on the thigh. It looked promising so we had a PCB and molded case professionally designed, and eventually received a patent. The Ambularm made a distinctive bell-like sound that brought a nurse running before the patient got to his/her feet, and fall rates were cut in half. I wasn’t involved in the later stages, but apparently the Ambularm stayed  on the market until 2015.

Desperation is the Mother of Invention

1983-1985

While I was busy building up my internal medicine practice and side business in clinical software, my wife Susie’s health was deteriorating as the complications from 20 years of Type I (insulin-dependent) diabetes accumulated. Home blood glucose monitoring was becoming available, and it was hoped that more precise control of insulin dosage could forestall complications, but data management remained primitive and paper logbook-based.

In hopes of helping Susie record and visualize her blood glucose data, I added a remote terminal to my Apple II+, consisting of a TV set mounted into the wall of the kitchen and a light pen built from plans in Byte Magazine. The built-in TV made the kitchen look high-tech, and the light pen let her enter her blood glucose without using a keyboard. The software could print out a log for visits to her physician, who found the graphs printed on curly thermal paper occasionally helpful.

Despite attempts at careful glucose control, the complications accelerated, eventually leading to end-stage kidney failure, treated with at-home peritoneal dialysis. There was no invention I could come up with to overcome this setback. All I could do was help manage the thrice-daily sterile drain/refill procedures and make sure the required medical supplies were always on hand.

When severe hyperparathyroidism then developed as a complication of the renal failure, Susie underwent surgery on her neck to remove the overactive glands, but the outcome was disastrous. She was left with vocal cord paralysis requiring a permanent tracheostomy, taking away her ability to speak while recovering. Finally, this was something I could help with. I put a 555 oscillator and small speaker into a brass tube, directing the sound output through a smaller soft rubber tube. With the tube in the corner of her mouth, she could create speech with a fairly intelligible albeit robotic-sounding voice. I found the gadget still in my “junk box” 35 years later.

Complications continued to set in, and she passed away in 1985.